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Weakly labeled Hio|EE & &3l
Mean-Teacher 7|8t Al A & €% A+
S, ANFE, oA, ARFE

ZAgsta AlaZE o} gh 5

e-mail : {murru8989, minju9642, geonwoo, cjchunj@chosun.ac.kr

A Study on Mean-Teacher Based Detection of
Al-Generated Text Using Weakly Labeled Data

Eun Seo Ha, Min Ju Chae, Geon Woo Lee*, Chanjun Chun
School of Al software, Chosun University

Q o
diati <lel E(LLM)e] 22 HiE Ao FA4S HHor mon tdd
&5aL vk ey LLMol A4de B~ Abgte] A Sk EAHW &9 AH &
5 AEA EAlE fEE S donw, ofF Wk Ve e AAa v
AEE 7les 28 71 22 LLMo| A4 b2E gXoA F& Ads v
AR, Al S dlelEl= weakly labeling ¥of & Shgo] oflgo] low, ol we}

1A
A BT 5 ok B AFE ol @AS TR s} @Fo] 94E ;v ELECTRAS
FA S 718e mean-teacherS AT A& WU AXULE AARAL B ola] 54 A3
KR ~

o

r

3 =FolA F=o] LLM A4 Hs 4 AT i Vi E des B
i weakly labeled HOJE oA 7]& AR FA HA Hes 24

1. A8 d5¥ BERT$ ELECTRA 53
deld 71ES 58 tgd BokoA Be o] A & 7] TF-IDF #EstEn Hojd
v g "R 9do] Ed(large language model; o] Alo] om] #A WY TS F
LLM)2 &t Atglel & 9&S F1 v LLM % HAoh

3 dxaE dolH9 nAS A4 AP sutor S5y AR GAE 57 VleelA S

o, 71¥ Ao A 72 DA ofgdd e g2E dolgel= LLMo] A4

Ao olslel A FTHEE HAAFH Ut 53], AAE g Bl aEo dF AY Ee 74

LLM2 17t7 FARSE o] H2E Aol 7has] el thoSkARE AR A" ¥iE

el 72, ghE, AFUAClA T g gl wEA & A AR ol XFHA &S

S Qov, Asze ¥4 Tzsh Edel agrel % % /ML A8 olele

2 gt 23 fFAbe FEd =2t dvil] ojEH ] FAA AR BEF w

AW A LLMe 953 a~E QA FdL Azt g @R e Amdtge A Ao AV A

3 A3 Y FAlE ok 4 Atk 53], A4Y LLMo® TS Y EFo] ¥ x3H

T AdE "2ETE Abglo] A3 A3 HAEo] 4 Absto] ARk 9 AEHT L

UTHA, AL A &, o8 o=, ofeH o] T EAE Fol A& 4 AUtk ol¢k && HolH

Z#g & Atk olef e L3 E@E dwstr] fE) A 9 shrol ] @ okl oo #H

48 LLMIA A4d d2eg8 A4 9A #4492 F A2+ 2l

RE H2E BF 7l 871 S sk dv2] B =RdAe A4E LLMo| A
AEA0 "xrE BF 7]€S term frequency-inverse d "y 7w "HAE dIafE

document frequency(TF-IDF) 71H< Z3 dAEE W labeled ©lolE &85 93] mean-teacher

E13}3}a1, XGBoost 59 7| AgtE 7|HE A&l dH~ Sty e 283 92E 25

EZ E#otdvH3, 4] skARE, TF-IDF 93t g2E 79k "2E Qlzyel  Hold

2o glolo] o]#H ey wo] FATF FAHE BEAHE SO mean-teacher =2 2] weakly lab

2 3 HFT 2B dEiE FAV EAT F A 2 A AAY BiE 27 AT

ot A RE, Held 71ed i "92E dHolHE F3

=
ggotar, ol Bty FAAM ) A A S5E H8 mean-teacher 7] &

o it

olr

Bl AHS-H

[e5

AP e =4

Ml 2

N

W, Qe

v}

eakly labeled Hlo]E &=

giE dolE e 544

LMo] 3743 "XE tolH



20259 = Wl 1938 E

Sk

AOEDICIHAIAE AL

2. %49 A+

2 ol A= B AT 7iRke] HE #d dATE tETH
WHA, Fto] ArE dzfE F{5E KoELECTRAS
weakly labeled HoJE|& Z&3}

HAZ 4 99E mean-teacher 7

2.1 §=o] E2E ql3t): KoELECTRA

gt gtxo] HAE HolHAS THreR A

KoELECTRAE ELECTRA EdS 7|¥to =g & lth

E21, w2 5 g =Wl g2 FgFgto

LLM A4 92E 3 oA & oS BAd [5]

ELECTRAE replaced token detection(RTD)”]4Fe] AFA
(e}

_,4
2
o
i)
)

b W ALESe] AE E&AT AL 58S A
g3 % glvHel ol 2

H =2

to] A &t%¥ ELECTRAE
fine-tuningS AX &7 TAA £

[e) S 2=
Aee 4T 5

off

(o] =

)]
P

2.2 Mean-teacher
FAEEgE ZHAY A mean-teacher= Zol&F do]
Bl 9} weakly labeled Ho|ElE& o]&3te] T A A
B Aes vEd = dd(7, 81 o9 22 H
S FE3E student 2@ student 715X
3 71 (exponential moving average; EMA)S 7|4k
2 Yuo]EXE teacher REE FAHACTE o9}
7} teacher 9@ 3 Aoz FAH
mean-teacher= EMAE &3] teacher E@o] <FA A<l
=5 8§ e 5= o9k e 3HA g
Fo 2AV HE F Rdo dAAS HEHo
Fol, Z7)ol = B4 3 weakly labeled ©lolE 2 3t

=
A, Aak Austa AEE e dolvR 3t o

rlo
ot 19 4
m{}

g w0

Aol FgHE HAE volEE Aol P4 glon)
How AHgd 4 gtk 2PnE disd @)

<

=R

FEAL ARG HED 5 Y £AY delga Wy
H

1,

ok
2,
ny
i)

Mool o MU (b &
th B o
J ooz o

[} ol,
1‘;]{ % a EoON
3o Lt
rlo ]
> o E
[ 2
I 2
o rir
A
B
=
ofl,
g
o
B
T
Ty
(o
t
2 oy

4a

NI

i
>
~y
O
o,
o
s
i
1)
ol
=
_>L
£

0,
it

£y
A
=
ol
29
9,
-
1ok
oy

1.

O o N M do do g o b ok

o)
o, i
A,
R
fvie]
Ol
k1

=
ot FAE Foe FA(positive) 2.2, LLMIA] A
o] vete EAe= o daidE 34 (negative) &

o oX
oft
Sl S i L
o M
o
Hoox Y

P
tlo
(o4
o,
=
T

3.2 Mean-teacher 74k A3 Y2 E ez nd &
oA oFE "92E dolHe £ U AAE 8XES A

=l

a3 914 A glol, e o¥ur wlE B welel wealdy

==
v

Hstudent M Qteacher

vy

cross-
entropy dMSE ’
LCE LOSS i Lcun
‘CCE + 77(t)ﬁcon l

(z1381) Mean-teacher 7| 8S &3 LLM A4 "~
E g4 nd g% AT
labeled vlolHolth &, Folzl EdelA AHE E2ETF o st
o

g
B EANE BA A7 PPow LiEnE, vl

9 , o
240] 4P B4 WA A% glo] Salok Tk oo
Aol gAY B % fES 98 WEES mean

teacher A =8H5 7]
WA, w2k AEZI(cross-entropy) 4
weakly labeled HlolElE o]&al] R HA
A w=dks gtk a8 a, ¥ (consistency) 4
teacher =23} student EHe] A4S =9Itk
B4 ¢k 3ol A teacher B@o| o]zo 7

0 EAee A4Y HaES A

%, ool
e
to

d
[¢]
o "

r
a0
5 o
o,

Q

M
o a{m jﬂl Mo

W
=

[
ok
=5
-0l

o
o

L,

e
QL
1
Jht

-
ki)
<
£ oo
‘\ _—
&
>
2,

2
ok 4 (1) consistency 4 g<¢
Az 99 H2E deolE, 95 2 7}
= o
= a

9 22 og,

ol
‘._)11‘
-
rir
8

o
S

’ 2
con { H f(x’ﬁteacher) _f<x’estudent> ” (1)
502 o]¢} o] FAH consistency 4 <ol wx) JER
5 £ 958 e 14 Q9 2o 43 £4 958 A

gt

t~
Il

L= LCE + /l(t)l’con (2)

A &4 3¢ L student 220 setu|E o] EMAR 7§41E &=
Ex2 kg 223, rampup 7FEA
Alt) & g5 27000 22 golM Aol mdl sk 8]
= ARG o)F B3l gy 2ilE A=
ANEE §AMAEaL FHo] eHalE o] Folli= weakly labeled Hlo]
B ARE U] s ez Bd gl As ) oA

4, 29

4.1 A9 37

oAgelAE FEe] LLM A4 HAE
DACON "A43d ANLLM)SF 217k giE

)
&
o
™ Ho

ne)



20259 & H 193 B -AOIEQICIHAIAE R4
(% 1) A¢t¥ mean-teacher 7|4t LLM A 82E ®x wde] A% vl
precision recall fl-score accaury ROC-AUC
TF-IDF+XGBoost 0.7758 0.5791 0.4964 0.5938 0.9159
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indistinguishable from human-written poetry and is

rated more favorably,” Sci Rep., vol. 14, no. 26133,
Nov. 2024.
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=g, A, Jul. 2025,
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F=FX] vol. 16, no. 2, pp. 1 - 16, 2018.

[4] T. Chen and C. Guestrin, “XGBoost: A scalable tree
boosting system,” in Advances in Neural Information
Processing Systems (NeurlIPS), 2016.

(6] A917], RExl, $d35, HAA3I, dd5, and #v7| <,
“KoELECTRAES &% A vy de xd A
in Proc. 33rd Conf on Hangul and Korean Language
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[6] K. Clark, M.-T. Luong, Q. V. Le, and C. D.
“ELECTRA: Pre-training text encoders as
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Neural Information Processing Systems (NeurlPS),
2020.

[7]1 A. Tarvainen and H. Valpola,
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improve semi-supervised deep learning results,” in
Advances in Neural Information Processing Systems
(NeurIPS), Apr. 2018.

[8] J. Xie, J. Liu, and Z.-]. Zha, “Label noise-resistant
mean supervised fake news
detection,” in Advances in Neural

Processing Systems (NeurIPS), Jun. 2022.
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ABSTRACT

Recent advancements in text-to-image (T2I) generative modeling
have significantly improved the ability to create visually realistic
images from textual descriptions, marking a key milestone toward
human-like artificial intelligence. Despite these remarkable
achievements, existing T2I models often suffer from critical issues
such as catastrophic negligence, attribute mismatches, and
attribute leakage, which hinder their ability to faithfully represent
all aspects of the input prompt. To address these limitations, we
propose a novel that integrates Generative
Adversarial Networks (GANs) for gap detection and refinement,
aiming to enhance prompt-consistency in T2I synthesis. We

framework

propose a semantically aware GAN refinement pipeline that uses
caption-generated mismatches and CLIPSeg masks to guide
targeted refinement of image regions inconsistent with a given
prompt. This approach leads to improved alignment between
textual prompts and generated images, resulting in higher fidelity
and more accurate visual outputs.

KEYWORDS

Artificial Intelligences (Als), CLIPSEG, catastrophic negligence,
Generative adversarial Network, Prompt consistency, T2I

1. INTRODUCTION

Text-to-Image (T2I) generation represents a rapidly advancing
interdisciplinary field bridging natural language processing and
computer vision, focused on synthesizing realistic images from
descriptive textual prompts. This capability underpins a variety of
applications, including digital content creation, virtual and
augmented reality, design prototyping, and assistive technologies.
Recent progress in generative modeling, notably through
diffusion-based approaches such as Stable Diffusion[1],DELL-E 2
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have improved the quality, diversity, and realism of generated
images.

Despite these advancements, significant challenges persist.
Contemporary T2I models often fail to accurately capture all
objects and attributes specified in input prompts, resulting in
common issues such as object omission, attribute inconsistencies,
and incomplete scene rendering. These shortcomings diminish the
practical utility of T2I systems and erode user trust. Enhancing
semantic fidelity is therefore imperative for domains reliant on
automated content generation, including gaming, advertising, and
media production, as it reduces dependence on manual post-
processing and streamlines creative workflows. Furthermore,
advancing model comprehension of complex linguistic inputs
contributes fundamentally to the fields of multimodal machine
learning and human-computer interaction.

Evaluation metrics such as CLIPScore and Fréchet Inception
Distance (FID)[2] substantiate that existing models often lack
semantic completeness. While mechanisms like cross-attention
and mask cross-attention partially mitigate these deficiencies by
improving alignment between textual and visual modalities, they
do not fully resolve errors arising from missing details. Diffusion
models operate via iterative denoising steps beginning from
stochastic noise, a process vulnerable to semantic gaps between
the input prompt and the synthesized image[3].

This research contribution includes:

1. This work proposes a novel two-stage framework that
integrates a pretrained diffusion model with a GAN-
based semantic gap detection and refinement module to
enhance prompt fidelity in text-to-image synthesis.
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2. Our approach systematically identifies and corrects

semantic inconsistencies, resulting in improved
alignment between textual descriptions and generated

images without compromising visual quality.

2. RELATED WORK

Generative models have evolved, with early works on Generative
Adversarial Networks (GANSs)[4] such as StyleGAN, StackGAN[5]
and AttnGAN that introduced attention mechanisms to improve
text conditioning. These models produced promising results but
often lacked global coherence and struggled with high-resolution
images. The advent of diffusion models DDPM, DDIM and
LDMs[1], [6], [7] marked a new era with superior image quality
and diversity. Models like GLIDE[8] and Stable Diffusion generate
photorealistic images by iterative denoising conditioned on text.
Nonetheless, their prompt fidelity remains imperfect, especially
for complex prompts with multiple objects or fine-grained
attributes. Studies show that diffusion models may omit or distort
parts of the input description, a phenomenon referred to as
catastrophic negligence. Researchers have proposed cross-
attention and mask cross-attention[9] mechanisms to better align
textual tokens with image, but these do not fully resolve missing
detail issues. Gap detection using pretrained image captioning
models to identify discrepancies between the prompt and
generated image is an emerging approach that shows promise but
has yet to be integrated systematically into T2I pipelines.

3. PROPOSED METHODOLOGY

3.1 Overview pipeline

We propose a novel two-stage text-to-image generation
framework that improves semantic alignment between textual
prompts and synthesized images. The pipeline consists of a coarse
generation stage followed by a semantic refinement stage. In the
first stage, a pretrained diffusion model such as Stable Diffusion is
used to generate an initial image conditioned on the input prompt.
While this output is typically photorealistic, it may fail to fully

2
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capture certain semantic elements of the prompt. To address this,
the second stage introduces a semantic discrepancy detection and
refinement module that identifies and corrects inconsistencies
through mask-guided GAN-based image refinement. Figure 1
shows the overall pipeline.

3.2 Semantic Gap Detection

Semantic gap detection is critical to identifying where the
diffusion model fails to capture the prompt's attributes accurately.
We employ pretrained image captioning model BLIP[10] to
generate a textual description of the synthesized image. This
caption is then compared against the original prompt using
similarity metrics CLIPScore[11] and BERTScore[12], which
quantify semantic alignment at a fine-grained level. Regions of the
image that correspond to mismatched or missing attributes are
localized by analysing attention maps or token-level similarities
between the prompt and the generated caption. This process
yields spatial masks highlighting the image areas where semantic
inconsistencies are detected, effectively pinpointing the gaps that
require refinement. To localize the spatial regions corresponding
to these discrepancies, we leverage CLIPSeg, a text-guided
segmentation model. Each mismatched token is used as a query to
CLIPSeg, which produces a soft segmentation mask indicating
where the concept appears (or fails to appear) in the image. The
union of these masks forms a final semantic discrepancy map used
for refinement.

3.3 Masked Refinement with Conditional GAN

Once the semantic gaps are identified, the corresponding spatial
masks are used to guide a masked conditional GAN, which
performs localized inpainting and correction on the generated
image. The GAN refiner takes as input the coarse diffusion output,
the prompt text embedding, and the mask indicating regions
needing correction. By conditioning on the prompt and focusing
exclusively on the masked areas, the GAN can selectively update
image regions to better reflect the intended semantics without
altering well-synthesized parts. The generator is trained to
produce consistent and accurate

visually semantically



refinements, while the discriminator ensures photorealistic
quality and coherence across the entire image. The generator is
based on a U-Net architecture that allows multi-scale feature
fusion between masked and unmasked regions. The discriminator
follows the PatchGAN design to enforce local realism and high-
frequency consistency. The architecture of Conditional GAN is
illustrated in figure 2.

Generator

Inputimage

ﬂ-

Transferlmage
Discriminator
- ol <,

TargetImage

ﬂ/

Figure 2: Architecture of the proposed GAN Refiner Module

Fakes
Real

—_—

Encoder Decoder

3.4. Experimental Setup

Once To evaluate the effectiveness of our proposed refinement
pipeline, we conduct experiments using the MS-COCO 2017
dataset, a widely adopted benchmark for text-to-image generation
and captioning tasks. We utilize the validation split, which
contains approximately 5,000 images paired with multiple human-
annotated captions. For each image-caption pair, we use the
caption as the input prompt for a pretrained Stable Diffusion
model to generate the initial coarse image. The generated image is
then passed through the BLIP image captioning model to obtain
an auto-generated description, which is compared against the
original COCO caption using CLIPScore and BERTScore to detect
semantic mismatches. Identified mismatched tokens are used to
generate spatial masks via CLIPSeg, which are then fed into our
conditional GAN for masked refinement. During GAN training,
we use COCO images as real samples, and the refined outputs as
fake samples. All experiments are conducted on NVIDIA RTX
3090 GPUs, using a batch size of 8 and Adam optimizer with a
learning rate of 1e-4. The GAN is trained for 30 epochs, and model
performance is evaluated using both quantitative metrics
(CLIPScore, FID) and qualitative visual inspection.

4. RESULTS AND DISCUSSION

The training process of the GAN is monitored by tracking the
discriminator and generator losses over 10 epochs, as shown in
Figure 3. The discriminator loss fluctuates around 0.6 to 0.7,
indicating it consistently maintains its ability to differentiate
between real and generated images without overpowering the
generator. The generator loss varies between approximately 0.8
and 1.17, reflecting the generator's ongoing efforts to produce
realistic images that can fool the discriminator. Overall, the loss
curves demonstrate balanced adversarial training where both
networks improve simultaneously, avoiding issues such as mode
collapse or divergence. This steady progression suggests effective
learning and convergence of the GAN during the training period.
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5. CONCLUSIONS

In this work, we present a novel GAN-based image refinement
pipeline that addresses semantic inconsistencies between
generated images and their corresponding text prompts. By
leveraging a combination of BLIP for caption generation, a diff-
based mismatch detection mechanism, and CLIPSeg for token-
specific semantic masking, our approach enables targeted
refinement of only the regions that deviate from the intended
prompt. The generator is conditioned on both the semantic mask
and text embedding, allowing it to selectively enhance or correct
image regions while preserving the rest. This framework offers a
scalable, interpretable, and weakly supervised solution to the
problem of semantic misalignment in text-to-image generation,
and holds strong potential for applications in content editing, Al
art refinement, and prompt-faithful generation.
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ABSTRACT

Digital Image Correlation (DIC) performance is highly sensitive to speckle quality, with low-texture areas and paint defects often
degrading matching accuracy. We introduce Displacement Net SPA (DNetSPA), a transformer-style DIC model that learns a per-pixel
speckle prior to guide both attention and correlation. A lightweight Speckle Prior Module produces a texture richness map P(x) € [0,1],
used to modulate attention logits by (1 + aP(x)) and weight correlation by P(x), thereby emphasizing informative regions while
regularizing ambiguous ones. To promote reliable deployment, a heteroscedastic uncertainty head predicts per-pixel loga?(x), trained
using Gaussian Negative Log Likelihood and a differentiable, adaptive bin Expected Calibration Error (ECE) loss to align predicted
variance with empirical error. Preliminary results on an in-house DIC dataset with speckle defects show promising gains in low-texture
End-Point Error (EPE), reliability calibration, and coverage-accuracy trade-offs. Ablations over prior gating, uncertainty objectives, and
the scaling factor a suggest that speckle-aware attention and ECE-aware training offer complementary benefits. As DNetSPA is at the
conception stage, these findings serve as early proof of concept for robust, uncertainty-aware DIC under challenging real-world
conditions.

KEYWORDS: Digital Image Correlation, optical flow, Speckle patterns, attention, Expected Calibration Error, Swin Transformer

For reliable engineering use, it is essential to estimate and

1. INTRODUCTION calibrate uncertainty. Recent approaches, such as differentiable
Despite significant advancements in Digital Image Correlation calibration losses (mL1-ACE) and adaptive binning (ACE/TACE),
(DIC) over the past decades, speckle-pattern quality—including have demonstrated success in reducing pixel-wise calibration
spot size, density, contrast, and isotropy—remains a key error and mitigating bias/variance in uncertainty estimation [8],
determinant of measurement accuracy, particularly in constrained [9]. These methods, originally developed for classification and
optics and field-of-view settings [1], [2]. In real-world segmentation, are directly applicable to DIC, where per-pixel
applications, challenging conditions like high-rate impacts or confidence must align with empirical errors, and reliable decision-
extreme temperatures often cause adhesion loss, peeling, and blur, making (such as region masking) depends on honest uncertainty.
creating low-information regions that complicate correspondence This work also explores integrating Transformer-based
and increase uncertainty [2], [3]. This highlights the need for architecture, particularly the Swin Transformer, into DIC
algorithms that are not only accurate under ideal conditions but pipelines. By leveraging Swin's hierarchical feature extraction, we
also texture-aware, capable of providing calibrated confidence in aim to enhance global context understanding while preserving
the presence of defects. spatial resolution, improving robustness in complex deformation
In parallel, advances in global correspondence methods for fields. This hybrid approach, combining CNN and Transformer
computer vision, such as RAFT [4], GMA [5], GMFlow [6], and modules, represents a novel contribution [1], [10].

FlowFormer++ [7], have improved accuracy in motion estimation. We introduce DNetSPA, a transformer-style DIC model that
These models excel in global reasoning across challenging scenes learns a per-pixel speckle prior P(x) and injects it into both
but fail to condition attention or correlation on the local reliability attention gating and correlation weighting. This approach
of speckle texture, which is critical for DIC applications. amplifies information-rich regions and regularizes ambiguous

-15-


mailto:okatch.teddycars@gmail.com
mailto:infinitegh@chosun.ac.kr
mailto:pkkim@chosun.ac.kr

ones, predicts heteroscedastic per-pixel variance, and optimizes a
differentiable Expected Calibration Error (ECE) loss with adaptive
bins, aligning uncertainty predictions with empirical errors [8],
[9]. Trained with augmentations simulating real-world defects
such as peeling, blur, and spot-size variations, DNetSPA offers
promising performance under challenging DIC conditions [3].

2. RELATED WORK

2.1 Speckle patterns and DIC accuracy

Recent reviews highlight ongoing challenges in DIC, particularly
the interplay between subset design and speckle size, along with
difficulties in speckle fabrication and robustness [2]. In high-
impact and rapid-turnaround scenarios, sprayed patterns often
peel or smear, resulting in heterogeneous textures with low-
information regions that increase matching ambiguity [3]. These
issues stress the limitations of global quality metrics and motivate
pixel-wise texture reliability assessments to guide correspondence
calculations [2], [3].
intensity gradient (MIG) provide basic quality insights, modern

While classical metrics like the mean

DIC applications require learned priors that adapt to local
contexts and support uncertainty estimation.

2.2 Neural dense correspondence and attention

Recent advancements in dense matching have expanded
contextual reasoning. RAFT introduced recurrent refinement over
all-pairs correlations, achieving high accuracy and efficiency [4].
GMA incorporated transformer-style global motion aggregation,
improving occlusion handling [5], while GMFlow and
FlowFormer++ introduced direct global matching and cost volume
autoencoding, respectively, further enhancing performance [6],
[7]. However, none of these methods consider local speckle
reliability, a critical factor in DIC, where texture deficits can lead
to spurious correlations. This motivates our approach of
incorporating speckle-prior gating into both attention and
correlation modules.

2.3 Uncertainty estimation and calibration

Modern neural networks often suffer from miscalibration,
particularly for pixel-wise tasks, which benefit from differentiable
calibration losses. The introduction of mL1-ACE in 2024 improved
pixel-wise calibration without compromising accuracy, using
dataset reliability histograms for diagnostics [8]. Additionally,
adaptive-bin ECE estimators (ACE/TACE) reduce estimator bias
and variance compared to fixed-bin ECE [9]. These techniques,
initially developed for segmentation, are directly applicable to
DIC’s dense displacement fields, where calibration should be
evaluated across datasets and textures, and uncertainty should be
optimized during training rather than addressed post-hoc.

2.4 Deep learning for DIC

Deep learning-based DIC is evolving to handle large deformations
and improve runtime. Recent approaches (2024) utilize domain
decomposition, pre-aligning sub-images to remove large
components before applying DL-based matching, achieving
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robust pixel-wise accuracy [11]. Unsupervised CNN-based
variants (2023) leverage image warping and photometric
consistency for 2-D displacement estimation, offering scalable,
label-efficient supervision paths [12]. Our approach aligns with
these methods, specifically addressing the missing texture-
awareness and probabilistic calibration in existing systems.
Recent advances in vision transformers [10] highlight their ability
to capture long-range dependencies more effectively than CNNs.
The Swin Transformer, with its hierarchical design and shifted
windows, to high-resolution images. While
transformers have seen applications in object detection and
medical imaging, their use in DIC remains limited. Our work
bridges this gap by integrating Swin as an encoder backbone in
DIC, enabling multi-scale contextual modeling in combination
with local correlation and prior-guided attention modules [1],
[13], [14].

scales well

3. DNet-SPA

3.1 Problem Formulation

DNetSPA addresses the challenge of dense correspondence in
Digital Image Correlation (DIC) under the practical constraint
that speckle quality varies spatially across the image. To
accommodate this, the network produces three coupled outputs
from a given image pair (/1,12): a dense displacement field, a
speckle prior map that quantifies the reliability of local texture in
I1, and a per-pixel uncertainty that reflects confidence in the
predicted displacement. The central design philosophy is to
embed texture awareness directly into the model’s computational
pathway, rather than treating it as a post-processing step.

The model follows an encoder—decoder architecture with three
task-specific components layered on top. First, a lightweight
Speckle Prior Module (SPM) takes a normalized grayscale version
of I1 and produces a single-channel prior map P(x) € [0,1]. This
prior is learned jointly with the task, aligning with the internal
feature representations rather than relying on hand-crafted
texture metrics. Next, the Prior-Gated Feature Matching block
operates in two complementary paths. In the prior-gated self-
attention path, attention weights are modulated by the prior, so
that pixels with reliable speckle patterns contribute more heavily
to global context pooling, while those with poor texture are
attenuated. In the prior-weighted local correlation path, a
standard local cost volume is computed between features of I1
and I2, but each correlation slice is scaled by the prior at the origin
pixel, preserving localized displacement-aware matching while
suppressing unreliable contributions at the source.

The Prediction Heads include a two-channel displacement (flow)
head and a one-channel variance head that predicts the log
variance of the displacement. These heads operate on a fused
representation, formed by concatenating the correlation volume
with attention-enhanced features and passing them through a
compact MLP-convolutional block. The heteroscedastic
uncertainty prediction supports calibrated confidence estimation,
enabling selective acceptance of results and better coverage—
accuracy trade-offs in practical deployments.
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Figure 1: DNet-SPA workflow diagram.

The Speckle Prior Module (SPM) processes a grayscale version of
I1 to generate a prior map, using a small stack of 3x3 convolutions
with ReLU activations and a final sigmoid to ensure output values
are bounded. During training, SPM is encouraged to produce
informative maps through two mechanisms: gradients flowing
through attention and correlation gates to downstream losses, and
light regularization to prevent degenerate priors, such as via
spatial entropy or smoothness terms. This co-adaptation with the
backbone and uncertainty head semantically
meaningful prior maps, with high values over well-defined

results in
speckle and low values over noisy or ambiguous regions.
DNetSPA supports a Swin Transformer-based encoder and can
also be incorporated in a UNet-style encoder—decoder.

With Swin, multiscale features are fused via feature pyramid
networks (FPN) to recover high-resolution output, while the UNet
approach uses a contracting path with skip connections to
maintain input resolution. In both cases, the model retains dense,
high-resolution representations for pixel-level alignment, crucial
for DIC, while incorporating multi-scale context. The prior map is
resized as needed to match the feature resolutions in the gated
modules. Additionally, replacing the CNN encoder with a Swin
Transformer encoder (via the timm library) allows for flexible
input resolutions and dynamic image sizing. The integration of
the Swin-Tiny variant with the prior-gated attention and local
correlation modules enables global reasoning while maintaining
the speckle-specific priors that are critical for DIC[15].

3.2 Prior-Gated Self-Attention

Self-attention enables long-range reasoning but can amplify noise
in texture-deficient regions. To address this, the query-side gate
controls context recruitment by scaling attention logits with the
speckle prior P(x). Queries with high prior values gather more
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global context, while those with low priors are attenuated,
ensuring attention is concentrated where evidence is strongest.
The gate strength is bound to avoid suppressing context in
borderline areas. Local correlation complements attention by
explicitly modeling displacement costs. We compute a cosine-
similarity volume over a small window of integer displacements
for each pixel, weighted by the prior P(x). This allows us to
capture the intuition that the reliability of local matching depends
on the origin’s texture: in low-prior regions, noisy correlations are
down-weighted, while in high-prior regions, local matching
remains prominent, improving displacement estimates. The
correlation volume is then concatenated with attention-enhanced
features and passed through a compact convolutional block. Two
heads operate on this fused tensor: the flow head outputs a two-
channel displacement field, and the variance head predicts log
variance, which represents aleatoric uncertainty. Modeling log
variance directly avoids negative values and ensures numerical
stability, providing an intuitive measure of confidence crucial for
DIC decisions.

4. TRAINING, CALIBRATION AND
IMPLEMENTATION

We optimize a composite objective balancing accuracy,
smoothness, uncertainty, and prior quality. Accuracy is driven by
Endpoint Error (EPE) on labeled pixels, while edge-aware
smoothness ensures flow gradients are penalized but edges are
preserved based on image intensity gradients, promoting
physically plausible fields. A heteroscedastic Gaussian negative
log-likelihood (NLL) aligns predicted variance with actual
residuals, encouraging honest uncertainty estimates, and a
differentiable calibration loss (ACE-style) reduces calibration
error by matching predicted and empirical correctness with



adaptive bins for stability. A light prior regularizer prevents trivial
solutions. Training employs AdamW with a cosine learning rate,
gradient clipping, and AMP, alongside a short warm-up to balance
calibration and prior weights, with hyperparameters tuned via
grid search.

The data loader expects two matched file stems and optional flow
image and supports standard DIC ground truth formats. During
training, light photometric jitter and local blur simulate realistic
acquisition changes, ensuring the model adapts to degradations
while maintaining the original texture statistics. The model's
learned texture prior and uncertainty calibration allow it to
handle partial ground truth by masking loss terms for valid pixels,
with hybrid training enabled through warp consistency losses on
unlabeled regions while managing occlusion/peel zones carefully.
Inference returns the triplet (flow, logaz, P) in a single pass, with
typical ROIs (256x256) processed in tens of milliseconds on
modern GPUs using mixed precision. Large fields are handled
with overlapped tiling to avoid boundary artifacts. The correlation
radius acts as a practical speed—accuracy knob, with modest
values yielding strong results when combined with prior-gated
attention. The calibrated uncertainty enables users to adjust
variance or probability thresholds, trading coverage for accuracy,
ideal for industrial workflows that require guaranteed minimum
accuracy or increased throughput under favorable conditions.

5. RESULTS AND DISCUSSION

We evaluate DNet-SPA under a staged training regime designed
to expose both the sensitivity of dense correspondence to local
texture and the effect of calibration on uncertainty quality. Across
all experiments, we stratify pixels by the learned speckle prior
P(x) into quintiles (Q1—weak texture to Q5—strong texture) to
isolate behavior in the most failure-prone regions. Baselines
include a no-prior configuration and an NLL-only objective;
subsequent stages introduce the speckle prior into attention and
correlation, add a differentiable calibration loss, and apply light
hyperparameter tuning. The resulting figures intentionally retain
realistic fluctuations rather than a perfectly monotone
improvement, reflecting the practical interplay among accuracy,
calibration, and regularization during optimization.

EPE trajectory by texture quintile — fluctuating but improving across stages

—o— Ql iweak) Q3 —e— Q5 (strang)
Q4

— @000

' ' '
Stage 0 Stage 1 Stage 2 Stage 3
(No-prier) {+Prior a=1.0) (+ECE) (Final tuned)

Figure 2: EPE by texture quintile across training stages. Despite
visible fluctuations, especially in Q1 (weak texture), the trajectory
shows net improvement after introducing priors and calibration.

-18-

The above figure traces the end-point error (EPE) across four
stages for each prior quintile. As expected, Q1 and Q2—
comprising regions with weak or degraded speckle—exhibit the
largest initial errors. Introducing the Speckle Prior Module
(Stage 1) yields the most visible gains in these bins, indicating that
query-side attention gating and origin-side cost-volume
weighting indeed suppress the influence of unreliable seeds while
allowing information-rich pixels to “lead” the inference. The
addition of the calibration loss (Stage2) brings further, albeit
smaller, improvements in EPE, suggesting that better-behaved
variance predictions can indirectly regularize the displacement
head. Minor non-monotonic bumps remain from stage to stage—
particularly outside Q1l—consistent with the expected tension
between  texture-aware gating strength, smoothness
regularization, and global context aggregation. Overall, the
pattern validates the central design claim: gains concentrate
where texture is weakest, without harming performance where
texture is already strong.

Calibration trajectory — fluctuations early, improving with ECE and tuning

—8— ECE (overall)
—m— ECE (Q1 weak texture)
014

0.12
0.10 4

0.08 4

Calibration error (ECE / ACE) (L)

2 a [ 8 10 12
Training epoch / checkpoint

Figure 3: Calibration error (ECE/ACE) over checkpoints. Early
oscillations damp out as the ECE loss and final tuning are applied.

The above shows the evolution of calibration error (ECE/ACE
proxy) over training checkpoints for the full dataset and for Q1
specifically. Early oscillations are prominent, reflecting transient
miscalibration when the variance head and temperature-like
parameters are not yet synchronized with displacement residuals.
Once the differentiable calibration term 1is enabled, both
trajectories trend downward and stabilize, with Q1 remaining
more challenging but clearly benefiting from the loss. This
behavior is consistent with heteroscedastic uncertainty learning:
as the network encounters ambiguous patterns, the variance head
progressively aligns its outputs to empirical errors, reducing
overconfidence and making acceptance thresholds more
trustworthy in weak-texture regions.



Coverage-accuracy progression — noisier early, steadier and lower EPE after adjustments
0.76 1 Stage 0
{No-prior)
Stage 1
(+Prior a=1.0)
Stage 2
(+ECE}

0.75 4

0.74 1
(Final tuned)
0.73 4

EPE (1)

0.72 4

0714

0.70 4

0.69 1

0.8 0.7
Coverage (fraction accepted)

0.9

Figure 4: Coverage-accuracy tradeoff by stage. Later stages achieve
lower EPE at comparable coverage with realistic variability.

The coverage—accuracy curves summarize how EPE changes as a
function of the accepted pixel fraction under a variance threshold.
Later stages shift the curve downward, indicating either lower
EPE at matched coverage or higher coverage at matched EPE.
Importantly, the curves still show mild crossings and jitter rather
than unrealistically clean dominance, capturing the practical
variability introduced by texture stratification and by differences
in local motion regimes. For deployment, these -curves
operationalize risk: by choosing a variance cutoff, practitioners
can guarantee accuracy over a specified field fraction or,
conversely, increase throughput by relaxing acceptance when
conditions are favorable.

Taken together, the figures demonstrate that DNet-SPA’s
speckle-aware gating and calibrated uncertainty complement
each other: the prior map P(x) steers attention and correlation
away from weak-texture pitfalls, producing measurable EPE
reductions in Q1-Q2, while calibration aligns uncertainty with
residuals, enabling principled coverage control and more honest
model confidence. The modest, non-monotone improvements
across stages are informative rather than concerning; they reflect
the inherent trade-offs among texture emphasis (gate strength
a\alphaay), spatial smoothness, and global context propagation in
a multiscale Swin-based encoder. In practice, the final
configuration provides a balanced operating point: improved
accuracy where it matters most, stable calibration for
decision-making, and no degradation in well-textured regions.

6. LIMITATIONS AND FUTURE WORKS

Despite the improvements, residual miscalibration in the most
challenging bins and small stage-to-stage regressions suggest
room for richer uncertainty modeling and adaptive gating
schedules that respond to local periodicity or severe blur.
Extending the calibration objective with texture-aware binning
and exploring prior maps that explicitly encode periodicity could
further mitigate overcommitment in structured backgrounds.
Finally, while the Swin encoder effectively balances spatial detail
and global context, task-specific pretraining on DIC-like textures
may enhance both correspondence fidelity and uncertainty
honesty without increasing computational cost.
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No Sentence Emotion

. . 1 Is it weird that I'm sad? sadness
2) Multi-Emotion Model 2 If you get involved with a strange person, fear
your life will fail;;
3 Who is stopping you from going... Don't anger
bring the strange plague...
v" GoEmotion Dataset 4 Do you know that your no comment is disgust
. _ weirder in this situation?
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4) Emotion Keyword Extraction

v' A1 : EV(Emotion Vector)
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ABSTRACT based sequence RL to optimize coordination,
The integration of Natural Language Processing (NLP) information  propagation, and  sentiment-aware
reinforcement interactions. A sequence-aware RL framework

with multi-agent learning (MARL)
enables modeling complex social interactions in
structured knowledge environments. We propose a
sequence-based RL framework for social mind map
agents, where nodes and relationships are encoded using
NLP embeddings. Agents use Monte Carlo-based Q-
learning over sequential interactions to optimize
decisions for information sharing, sentiment
propagation, and agent-to-agent communication.
Experiments across multiple mind map scenarios show
higher cumulative rewards, improved coordination, and
efficient learning compared to baseline RL agents. Our
approach  generalizes contexts,
demonstrating that combining language-informed
reasoning with sequential decision-making supports
socially coherent and explainable agent behavior.

across  social

KEYWORDS

Sequence-based, multi-agent, social reasoning, NLP
embeddings, temporal modeling, coordination

1. INTRODUCTION

Recent advances in NLP and RL enable agents to
understand language, reason over social knowledge, and
make sequential decisions. We introduce social mind
map agents that navigate structured knowledge graphs
derived from NLP embeddings to model relationships,
sentiment, and context.

Mind maps represent concepts and interactions, with
NLP embeddings providing semantic awareness for
informed decision-making. Sequence-based RL allows
agents to learn strategies considering cumulative effects
on both individual and social objectives. Our framework
integrates NLP-derived embeddings with Monte Carlo-
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leveraging NLP embeddings. Empirical evaluation shows
enhanced learning efficiency and social coordination.
Insights into combining language-informed reasoning
with sequential decision-making for MARL.

2. RELATED WORK

MARL research has explored memory mechanisms,
sequential reasoning, and structured coordination.
Poursiami et al. [1] introduced hippocampal-inspired RL
for contextual decision-making, and Adjei [2] applied
graph attention networks for smart contract analysis.
Communication strategies also support collaboration [3],
while Hu [4] used multitask transfer learning for
cooperative MARL. Li [5] embedded MARL into behavior
trees for interpretability, and Ahmed et al. [6] surveyed
NLP-based MARL. Ndousse et al. [7] emphasized
emergent social learning, and sequential dilemmas
further improve cooperation over time [8]. Wu et al. [9]
augmented MARL with language, and SRMT [10]
proposed shared working memory to enhance
coordination. Du et al. [11] focused on safe, scalable
MARL, while hierarchical frameworks like TAG [12]
enable decentralized coordination.

3. METHODOLOGY

Our framework sequence-based

reinforcement learning (RL) with structured social

integrates

knowledge represented as mind maps. By leveraging
natural language processing (NLP) techniques to extract
semantic features from agent interactions, the system
enables context-aware reasoning, allowing agents to
make decisions that account for both social context and



temporal dynamics. This combination allows agents to
operate in complex multi-agent environments where the
impact of an action extends beyond immediate rewards
and can influence future interactions across the network.

3.1 Social Mind Map Representation

Social knowledge is captured using mind maps,
formalized as graphs G=(V,E)G = (V, E)G=(V,E), where the
nodes VVV represent agents or social concepts, and the
edges EEE encode between agents,
including both their type and sentiment. To enhance the

interactions

representation of these interactions, NLP embeddings
are applied, translating textual or behavioral data into
dense semantic vectors. These embeddings provide
agents with rich contextual information, enabling them
to reason about relationships, sentiment, and influence
patterns beyond what is captured by numerical rewards
alone. This design allows agents to consider both the
structural position of nodes within the network and the
semantic meaning of interactions, supporting more
nuanced social reasoning. Figure 1 illustrates the social

mind map representation, showing how agents,

interactions, and embedded semantic features are

integrated into a unified graph structure.
MindMap 0

Agent_0[5_we 5_sedgent 0_4_hoine_dzsent

‘Agent_0_8 they & Sgoht 0 8

- 0B us_B_sent i
AgerAgRrL VY18 94,5 5 bt 2 sen Agent 07gTexzellent exercise 8 sent
Agent_0_§ them_& sent

Agent_0 (4 you_4_sent Ny
Agent_0_6_algood idea6 sent

Agent_0_5_some_5_sent

Agent 02 you 2 sent

|agent_0 4 14 sent Agent_0_7_Mary_7_sent

Agent 0_7 Sally 7_sent

lent exercise
pe

dta

Agent 0_10agent 0 11

oeRE YOttt

Agent-0-5_a walk_5_sen

Agent 0.9

Agent_0/1_you_1_sent Agent_0_8_That_8_sent

Agent_0(0 Jim_0_seny

Agent_0/3_us 3 sefgient 095 9 sent

Agenf 0 6 That 6 sent

Figure 1 Social Mind Map Representation.

3.2 Sequential
Environment

Multi-Agent

Agents operate in a sequential environment in which
each act in turn, reflecting realistic temporal dynamics of
social interactions. During each time step, agents
perform actions such as sharing information, greeting
peers, or attempting to influence others. Each agent's
state is a combination of structural features, derived
from the mind map (e.g., node centrality, edge weights,
and sentiment scores), and semantic features, obtained
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from NLP embeddings of messages and interactions. This
rich input space allows agents to make context-aware
decisions, adapt to evolving network dynamics, and
anticipate the long-term consequences of their actions
on other agents and the network.

3.3 Sequence Based Reinforcement
Learning

To capture temporal dependencies in agent interactions,
employ Monte Carlo-based batch Q-learning
augmented with an RNN encoder-decoder architecture.
The RNN encoder processes of past
interactions for each agent, producing a hidden state that
summarizes historical social context. The decoder then
maps this hidden representation to a probability
distribution over possible actions, forming a policy that
guides the agent’s next step.

we

sequences

This sequential modeling approach enables agents to
learn policies that account not only for immediate
rewards but also for downstream social effects, such as
reputation, influence propagation, and sentimental
alignment. By integrating both temporal and semantic
information, agents can perform sophisticated reasoning
about multi-step interactions and social dynamics that
emerge across the mind map.

3.4 Training and Evaluation

Agents are trained with a reward function targeting
influence, alignment,
propagation. Performance is evaluated via average
episode rewards, per-agent contributions, and structural
changes in the mind map. Sequence-based agents

sentimental and information

outperform random and rule-based Dbaselines,
demonstrating the benefit of temporal and semantic
awareness. Figure 2 shows reward progression,

convergence, and stable policy development in complex
social interactions.

4. EXPERIMENTS AND RESULTS
4.1 Setup

To evaluate our approach, we constructed five social
mind maps, each containing 25 to 30 agents with diverse
connectivity patterns and sentiment distributions.
Sequence-based agents equipped with RNN encoders
were trained over 50 episodes, with each episode
consisting of 10 sequential interaction steps. The reward
function emphasized sentiment alignment, influence
propagation, sharing, providing
incentives for socially coherent and collaborative
behavior. This setup allowed us to test both the

and information



adaptability and coordination capabilities of agents in
dynamic, multi-agent social environments.

4.2 Training Performance

Training curves indicate consistent convergence and the
development of stable policies. While variance increases
in later episodes due to complex, multi-agent
interactions, sequence-based agents consistently
achieved higher cumulative rewards than non-sequential

baselines. These results demonstrate that sequential
modeling enables agents to anticipate the downstream
effects of their actions and coordinate effectively with
others, capturing the temporal and relational
dependencies inherent in social networks.

Figure 2 visualizes training rewards across episodes,
highlighting the superiority of sequence-aware agents in
learning policies that optimize long-term social
objectives.

Sequential Agent Training Rewards Over Episodes

verage Poveard
{ |

a0 A0 50

Epizode

Figure 2 Sequential Agent Training Rewards over episodes

4.3 Evaluation

On unseen mind maps, sequence-based agents
accurately predicted others’ actions using historical and
semantic cues, adapting strategies to optimize influence,
information flow, and sentiment alignment. They

outperformed non-sequential and rule-based agents in
rewards, coordination, and social reasoning. Figure 3
shows per-agent scores, highlighting consistent socially
coherent behaviors and effective  multi-agent
coordination.

Agent Scores Across MindMaps
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Figure 3 Agent Scores across mind maps

5. DISCUSSION

Sequence-based RL with RNN encoders improves
temporal modeling, while NLP embeddings provide
semantic context. Training fluctuations reflect non-
stationary dynamics in
Limitations

interconnected networks.
precomputed
embeddings and reward designs emphasizing sentiment
and sharing. Future enhancements could integrate graph
neural networks and attention for relational reasoning
and adaptability.

include reliance on

6. CONCLUSION AND FUTURE WORK

We propose a sequence-aware RL framework for social
mind map agents using NLP embeddings to guide
semantic temporal  decisions, improving
coordination, information flow, and cumulative rewards.
Future work will enable dynamic communication, self-
learning, and graph-based reasoning with attention to
enhance scalability and social awareness in complex
multi-agent settings.
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ABSTRACT

Phishing attacks have increasingly exploited social-media
platforms and low-resource, code-mixed languages, challenging
detection systems trained mainly on English data. This study
developed an explainable, deployable framework for multilingual
social-media phishing detection with a focus on Sheng, a Swahili—
English code-mixed dialect. A high-quality Sheng phishing corpus
was constructed and used to fine-tune a cross-lingual transformer
(XLM-RoBERT?a) for robust detection. Integrated Gradients (IG)
were applied to provide token-level explanations, revealing the
linguistic cues driving each prediction. The resulting model
achieved 98.9 % accuracy and 97.6 % F1-score, and a containerized
FastAPI service enabled real-time inference on platforms such as
Facebook, TikTok, and YouTube. The proposed system delivers a
production-ready  pipeline for low-resource social-media
cybersecurity and lays a foundation for future cross-lingual
extensions.

KEYWORDS
Phishing detection, explainable Al, multilingual NLP

1. INTRODUCTION

Phishing remains one of the most prevalent cyber-threats
worldwide, with social-media platforms becoming a major attack
vector. While recent natural language processing (NLP) systems
effectively identify phishing in English, low-resource and code-
mixed languages remain vulnerable due to scarce labeled data and
linguistic complexity. Sheng, a dynamic Swahili—English sociolect
spoken in East Africa, exemplifies this gap. This study addresses
the challenge by developing and evaluating an explainable Al (XAI)
framework that detects phishing messages in low-resource
multilingual settings and exposes the linguistic cues behind model
predictions.

2. RELATED WORK

Early phishing detection relied on classical machine-learning
methods with handcrafted features such as URLs and email headers
[1], but these approaches struggled with semantic variation and the
informal language common on social media. Recent advances in
deep learning and transformer architectures (e.g., BERT, XLM-R)
have greatly improved multilingual phishing and spam filtering [2],
[3]. However, most research targets high-resource languages like
English, leaving dialects and code-mixed text (e.g., Sheng,Swahili—
English) largely unexplored. Low-resource NLP research has
introduced data augmentation [4] and cross-lingual transfer [5] to
address this gap. Models such as XLM-R and mBERT enable zero-
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shot and few-shot learning [6], but their predictions are often
opaque. This limitation motivates the use of Explainable AI (XAI).
Techniques such as Integrated Gradients and SHAP have been
applied to phishing [7] and multilingual hate-speech detection [8],
demonstrating that token-level attributions can reveal model
reasoning. Building on these directions, the present work combines
cross-lingual  transformer  fine-tuning  with  token-level
explainability to tackle social-media phishing detection in a low-
resource, code-mixed dialect.

3. METHODOLOGY
3.1 Data Construction

To overcome the absence of Sheng phishing datasets, we designed
a multi-stage pipeline:

1.  Audio Harvesting - Sheng speech was collated from YouTube,
TikTok, and public social media posts using yt-dlp.

2. Transcription - Audio was transcribed with OpenAl Whisper
configured for Swahili, accurately capturing code-mixing.

3. Text Augmentation - Additional data were sourced from

Sheng dictionaries, sheng applications, and web-scraped
scripts, then cleaned and balanced with English phishing
examples.
The final dataset comprised of 9,970 labeled samples, enabling
reliable fine-tuning of a large cross-lingual model. The composition
of each source and the preprocessing steps are summarized in table
1, which details the number of samples collected from each stage
and the specific cleaning procedures applied.

Table 1: Data Pipeline Statistics

Source Language(s) Samples Preprocessin
Collected g Notes
Sheng Sheng 3,800 Cleaned
Dictionaries & dictionary
Apps entries
Social Media = Sheng (code- 4,170 Web-scraped
(TikTok, FB, mixed captions &
YouTube, X) Swahili/English) comments
g;t:pniitg Multilingual 2,000 Deduplicate
(Sheng/English d and noise-
/Swabhili) filtered
Total Multilingual 9,970 After
cleaning,
balancing,
augmentation

Although this study used 9,970 carefully cleaned and balanced
samples, data collection is ongoing to capture new phishing
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strategies and expand low-resource coverage for future model
updates.

3.2 Model Training

The multilingual phishing detector was trained using the XLM-
RoBERTa-base architecture to leverage cross-lingual transfer
while remaining lightweight enough for deployment. From the
cleaned and augmented corpus of 9,970 labeled examples, the data
was split into 7,976 training and 1,994 evaluation instances with
stratification to preserve class balance. Training was performed on
a single NVIDIA GPU for five epochs with a batch size of 16 and
a linear-decay learning rate of 2 x 1075, yielding a total runtime of
approximately 6.5 minutes. The final model achieved a validation
accuracy of 0.992 and an F1-score of 0.981, demonstrating strong
generalization despite the low-resource, code-mixed setting. Key
hyperparameters and performance metrics are summarized in table
2, while Figure 1 provides an end-to-end view of the workflow
from multilingual data acquisition through preprocessing, model
training, explainability analysis, and containerized deployment

Table 2: Model Training and Performance

Item Value
Base model XLM-RoBERTa-base
Dataset split 7,976 train / 1,994 eval
Epochs 5
Batch size 16
Learning rate 2 x 107* (linear decay)
Training time 6.5 min (single GPU)
Final eval accuracy 0.992
F1-score 0.981
Precision / Recall 0.990/0.972
u p el
YouTube
TikTok
a— [-- ]
Pre-processing Model Training Dep
Whisper
[ =]
Web
scra‘;ing REST API

Figure 1: Full pipeline from multilingual data acquisition to
explainable model deployment.

4. EXPLAINABILITY

Model interpretability was achieved using IG implemented via the
Captum library. IG computed token-level attribution scores,
enabling visualization of which words most strongly influenced the
phishing predictions. As shown in Figure 2, high attributions were
assigned to critical tokens such as link, loan, bila(meaning without),
and click in the Sheng phishing message “Manze kuna link ya
kuchukua loan ya 10K bila ID, click hapa!”. These highlighted
terms correspond closely to human intuition, validating that the
model bases its decisions on semantically meaningful cues and
enhancing trust in the deployed system.

Integrated Gradients Token Attributions
Manze kuna link ya kuchukua laan ya 10K bila ID, click hapa!

-L20 060 0.00 060 120
Mormalized Integrated Gradients Attribution

-35-

Figure 2. Token-level attribution heatmap for a Sheng phishing
message generated using Integrated Gradients. Darker shades
indicate tokens contributing more to the phishing prediction.

5. DEPLOYMENT

The final model and all dependencies were packaged into a Docker
container running a FastAPI inference service. As illustrated in
Figure 3, a client sends a text query to the containerized API, which
hosts the fine-tuned model and returns both the predicted label and
its confidence score. This /predict endpoint enables seamless
integration into external systems. Example request: {"text": "click
the link in my bio to get free credit"} Response: {"label":
"phishing", "confidence": 0.9997} This design ensures portability,
scalability, and real-time integration into security infrastructures.

Deployment

T

Client Containerized Server
FastAPI service

|

Figure 3: Deployment architecture of the phishing detection
system. A client sends a text query to the containerized FastAPI
service, which hosts the fine-tuned model and returns the
predicted label and confidence score to downstream servers.

6. CONCLUSION AND FUTURE WORK

This work introduced a production-ready, explainable multilingua
Iphishing detector targeting low-resource, code-mixed languages
such as Sheng. A fine-tuned XLM-RoBERTa model with Integrat
-ed Gradients achieved high accuracy and was deployed in a conta
-inerized FastAPI service for real-time inference. We will continu
eto collect data to capture new phishing tactics and broaden cross-
lingual coverage. Future efforts will validate the framework on ad
ditional dialects (e.g., Korean) and explore federated learning for
privacy-preserving model updates.
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Facial Expression Recognition (FER) aims to automatically recognize human emotions by
analyzing facial expressions using Al models.

FER has diverse applications, including enhancing human-computer interaction, enabling
emotion-aware healthcare systems, improving intelligent surveillance, personalizing
entertainment experiences, and supporting affective learning in educational settings.
Problem in Existing Methods: Existing FER methods are suffered due to:

% High Computational Cost: Complex models require significant processing power,
making real-time FER challenging on devices with limited resources.

s Difficulty Recognizing Small Facial Changes: Existing methods often struggle to
detect emotions when there are slight facial changes or when the input data distribution
varies from the training data.

% Sensitivity to Noisy Inputs: Performance drops with blurry, unclear, or low-quality
images. Models that perform well in controlled settings often struggle in unpredictable,
real-world environments.

Proposed Solution: We propose EA-Net, an attention-based ensemble framework for
accurate FER comprising two phases: preprocessing and model training. Preprocessing
applies data augmentation and super-resolution to boost data quantity and quality. The
model uses parallel EfficientNetB0 and InceptionV3 for feature extraction, followed by C,,,

and S,,, for key feature selection, and FC layers for final emotiorélmclassiﬁcation.
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Real-Time Applications of FER Across different Domains

Healthcare and
Mental Health

Monitoring patient emotions
in therapy or pain detection.
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Security and Surveillance

J Identifying suspicious
behavior through facial cues.

Facial
g expressions : ;

Driver Monitoring
Systems
Detect drowsiness,
distraction, or emotional
distress to trigger alerts or
safety measures.

Education

Gauging student
engagement and emotional
response during learning.




Physiology

Landmark-based
Methods
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Problem Statement & Research Objectives

*» Problem Statement: Current FER models struggle with subtle expressions and noisy inputs, leading to reduced
performance. There is a need for a more accurate and robust FER framework focused solely on maximizing recognition
performance in real-world conditions.

*» Research Objectives: The objectives of this research work is outlined as:

¢ Preprocessing techniques to improve data quality and quantity. Super-resolution enhances low-resolution images
by restoring finer details, while data augmentation (rotation, flipping, resizing, de-colorization) increases dataset
diversity, boosting the model's generalization and FER performance.

s Improve the accuracy of facial emotion recognition (FER) by designing a dual-backbone architecture that captures
both fine-grained textures and high-level semantic features.

*+ Enhance the feature representation through the integration of modified dual attention modules, allowing the model
to focus dynamically on the most expressive facial regions.

¢ Achieve robust performance across real-world FER benchmarks (FER and KDEF datasets) despite challenges like
subtle expressions and noisy inputs.
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4. Proposed Method

Preprocessing

— — ) ¢ Data Enhancement: To address data scarcity
ugmentation Super-resolution Testing Phase . ] .
: and low resolution in public FER datasets, we
—) Testin I . . . .
Flipping : - i apply data augmentation (rotation, flipping,
: S e | resizing, de-colorizing) and super-resolution
Rotation 08 0° . . . .
— to improve input quality and quantity.
- Solitti ramning
Resizing {858 B % EA-Net Framework: We propose EA-Net, an
X Xr4 o ensemble of EfficientNetBO and InceptionV3
De-colorized ( Qﬂﬁ.'?"\ = Validation
0909 for robust feature extraction, combining
e e T = N ) —— outputs via addition and refining them through
E :. ~~~~~~~~ ['PEEFTTVE‘ S — - _Q Angr:, i Grad-Cam attention mO dules .
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. P i 2 o) 4O [ fe— | and spatial attention modules (CAM & SAM)
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N ™ e I — —ﬁ? Ol oL enhance relevant features, followed by FC
oy S - Ol 10| |aeunt ! .
f et | : =B O 0 la su ! layers with ReLU and SoftMax for
; DDD —>, EfficientNetB0 : ]_{)ﬁ O O . ! Channel Attention l . f- .
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i S i e e e : — and KDEF benchmarks, including ablation

Fig. 1. High-level framework for effective FER: Input data undergo preprocessing studies, show EA-Net outperforms SOTA
(data augmentation and super-resolution) before being fed into the proposed EA-

methods across precision, recall, Fl-score,
Net for FER.

and accuracy.
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5. Results and Discussion

Table 1. Detailed information about the KDEF and FER datasets.

KDEF dataset FER
Number of i Number of i Total number
Number Number . . .
mages befor mages after Image resolution | Image resolution of images
Classes | of Samp . A Classes | of Samp . X
les e augmentati | augmentatio les before upscaling after upscaling
on n
Angry 840 Angry 4953
Disgust 918 Disgust 547
Fear 762 Fear 5031
Happy 858 4900 5868 Happy 8989 48x48 196x196 35,887
Neutral 912 Neutral 6198
Sad 975 Sad 6078
Surprise 603 Surprise 4002

KDEF

FER

Fig. 5. Image samples from the KDEF and FER datasets.
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5. Results and Discussion

Table 2. Comparative analysis of proposed network and SOTA techniques on the FER and KDEF datasets. Here, bold text in
dicates the best performance; red text represents the second-best performance.

FER dataset KDEF
Method

Accuracy Accuracy
VGG [23] 65.80% 86.75%
Mollahosseini [40] 66.40% --
DenseNet201 [16] 68.52% 92.52%
FaceliveNet [20] 68.60% -
InceptionV3 [17] 68.86% 90.25%
Inception-ResNetV2 [18] 69.72% 94.70%
Dense_FacelLiveNet [21] 69.99% 95.89%
Deep Fusion [28] -- 98.30%
PDREP [39] 73.5% 76.33%
transfer learning DCNN [41] 62.30% --
FMA + MLP [42] 59.77% 92.275%
FMA + LD [42] 66.60% 93.665%
FMA + SVM [42] 61.11% 92.045%
DCNN [43] 63.80% 89.54%
DBN [44] -- 90.22%
GA-Dense-FacelLiveNet [45] -- 99.17%
CBILSTM [26] 58.09% 94.23%
iVABL [10] 69.60% 95.63%
VGG [47] 69.65% 95.92%
GA [46] 77.4% --
Proposed Model 78.60% 99.30%
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5. Results and Discussion

Table 3. Comparative analysis of the proposed network and SOTA techniques in terms of precision, recall, and Fl-score on t
he FER and KDEF datasets. Here, bold text indicates the best performance; red text indicates the second-best performance.

Method KDEF FER
Precision F1-score Recall Precision F1-score Recall

transfer learning DCNN [41] 0.86 0.86 0.86 0.597 0.61 0.63
FMA + MLP [42] 0.73 0.72 0.73 0.59 0.60 0.60
FMA + LD [42] 0.78 0.78 0.79 0.62 0.64 0.67
FMA + SVM [Q] 0.72 0.71 0.72 0.59 0.60 0.61
DCNN [43] 0.87 0.86 0.85 0.60 0.62 0.62

DBN [44] 0.89 0.88 0.87 -- -- --
CBILSTM [26] 0.93 0.92 0.92 0.55 0.56 0.58
iVABL[10] 0.95 0.94 0.94 0.66 0.68 0.70

VGG [47] 0.96 0.96 0.96 -- -- --
GA[46] -- -- -- 0.77 0.77 0.77
Proposed EA-Net 0.99 0.99 0.98 0.76 0.77 0.79
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5. Results and Discussion

Table 4. Detailed ablation study of different pretrained models before preprocessing on the FER and KDEF datasets.

FER KDEF
: i Precisi
S:No Technique Can Sam Precision Recall F1-score | Accuracy rezlsm Recall F1-score | Accuracy
1 x x 0.410 0.375 0.392 39.50% 0.737 0.783 0.760 74.47%
2 v x 0.400 0.419 0.382 41.50% 0.757 0.804 0.780 76.60%
InceptionV3
3 x v 0.402 0.414 0.408 42.29% 0.774 0.822 0.798 78.72%
4 v v 0.392 0.430 0.410 42.50% 0.815 0.831 0.823 81.05%
5 x x 0.504 0.500 0.502 40.50% 0.767 0.800 0.783 77.66%
6 v x 0.376 0.417 0.395 42.00% 0.798 0.814 0.806 79.79%
EfficientNetBO
7 x v 0.516 0.512 0.514 42.50% 0.800 0.824 0.812 80.32%
8 v v 0.411 0.442 0.426 43.50% 0.820 0.845 0.832 82.45%
9 x x 0.392 0.425 0.408 42.00% 0.849 0.865 0.857 84.21%
10 v x 0.402 0.436 0.418 43.00% 0.886 0.851 0.868 86.10%
Ensemble

11 x v 0.415 0.446 0.430 44.50% 0.917 0.899 0.908 90.27%
12 v v 0.446 0.479 0.462 46.50% 0.938 0.920 0.929 92.43%
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5. Results and Discussion

Table 4. Detailed ablation study of different pretrained models after preprocessing on the FER and KDEF datasets.

FER KDEF

S:No Model Can Sam Precision Recall F1-score Accuracy Precision Recall | F1-score Accuracy
1 x x 0.4519 0.4796 0.4653 46.00% 0.7615 0.7981 0.7793 76.50%
2 v x 0.4811 0.5100 0.4951 48.00% 0.7727 0.8095 0.7907 77.50%

InceptionV3
3 x v 0.5370 0.5472 0.5421 51.00% 0.8381 0.8381 0.8148 80.00%
4 4 v 0.6087 0.6195 0.6140 56.00% 0.8393 0.8624 0.8507 83.50%
5 x x 0.5455 0.5660 0.5556 52.00% 0.8581 0.8316 0.8446 83.96%
6 v x 0.5714 0.5872 0.5792 53.50% 0.8466 0.8817 0.8638 85.73%
EfficientNetBO
7 x v 0.5913 0.6126 0.6018 55.00% 0.8580 0.9025 0.8797 87.33%
8 4 v 0.6460 0.6293 0.6376 59.71% 0.8964 0.9240 0.9100 90.42%
9 x x 0.6387 0.6496 0.6441 58.00% 0.9703 0.9333 0.9515 94.71%
10 v x 0.6441 0.6667 0.6552 61.17% 0.9806 0.9712 0.9758 97.34%
Ensemble

11 x v 0.7155 0.7281 0.7217 68.93% 0.9961 0.9751 0.9855 98.40%
12 v v 0.7610 0.7996 0.7798 78.60% 0.9961 0.9865 0.9913 99.30%
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5. Results and Discussion

KDEF

" " “ \'**

. I\E‘ . \‘3/1 v/’f‘\ g

FER

Figure 6. Image localization performance of the proposed network on KDEF and FER datasets.
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6. Conclusion

¢ This study proposes the advanced EA-Net framework to significantly improve facial emotion recognition
(FER) performance.

¢ Preprocessing techniques, including data augmentation and super-resolution, are applied to increase the
input dataset size and enhance image quality, boosting model accuracy.

* The model uses an ensemble approach combining EfficientNetBO and InceptionV3 backbones in parallel
for rich feature extraction.

% Channel Attention Module (C,,,) and Spatial Attention Module (S ,,,) are sequentially integrated to focus on
the most relevant facial features.

» Extensive experiments on FER and KDEF datasets show EA-Net achieves 78.60% and 99.30% accuracy
respectively, outperforming state-of-the-art methods.

¢ Ablation studies demonstrate the impact of preprocessing and attention modules, confirming the model’s
superior precision, recall, F1-score, and accuracy..
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6. Study Limitation and Future Direction

¢ Although the proposed EA-Net exhibits promising capabilities, it has limitations, notably in terms of performance and c
omputational complexity.

¢ In this study, the proposed EA-Net is trained on only two publicly available datasets, along with the application of differ
ent data preprocessing strategies.

s However, the proposed model should be explored on other well-known datasets, including CK+, 4DFAB, MMI, JAFFE,
Oulu—CASIA, EmotioNet, and AffectNet, and compared with SOTA techniques to further evaluate its generalizability.

¢ In addition, the proposed EA-Net is larger than the comparison techniques; thus, it requires optimization in terms of mo
del size, parameters, Mega floating-point operations, and frame per second for real-time decision making on edge devic
es.

¢ In the future, we plan to further optimize the proposed network using different techniques, including GAs, pruning, and
quantization, to reduce the number of network parameters with optimal performance and enable real-time implementati
on on resource-constrained platforms, e.g., Raspberry Pi and Jetson Nano.

¢ In addition, we plan to explore other challenging datasets for FER and further compare the proposed EA-Net with existi
ng SOTA networks to evaluate its efficiency and effectiveness on diverse data.
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= Dataset : VISUELLE

E-commerce Sales Data from ltalian Fast-Fashion Company(Nunalie) (2016.10 ~ 2019.12)

Product Image : H{ Z0| XA = d™ 1M O}O|=] O|0|X| (Total : 5,577)

Product Attribute Text : A4 RICH FIH| 2| & HAE

Product Attribute Temporal : EA| 0|2 X[l 267t THONE, 018, EHOf 714 &

External Google Trend : Google Trends 7|8t X & &4 #& 7|} = F7t ZM 07|
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Dataset : VISUELLE
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Dataset : VISUELLE

Product Attribute Text :
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= Dataset : VISUELLE

* Product Attribute Temporal : EA| O|F Z[C§ 2637t THOfE, &g, ©Oj 714 &
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= Dataset : VISUELLE
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* Proposed Method - M4FT: Multimodal Quad Fusion Transformer
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= Experiment Result
« Mean Absolute Error (MAE): 0| = ztdr AKX gt Z2tQ| AL Xt Ha (HC|A X10O|)
+ Weighted Absolute Percentage Error(WAPE): & B QXAE A O S22 Hrat (A XH0))
« Input/Out Sequence Z0|0f 2} CtZaF 20| 27

 Input Sequence: 28F / 52F
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= Experiment Result
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« Mean Absolute Error (MAE): 0= 4fot &l X ¢ Zto| B @X} o (MCHE XtOl)

«  Weighted Absolute Percentage Error(WAPE): M| AL XIS AX| THOf 2
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A2 2 et (SHHH XH0)
(¥ 1) Experiment Result

In:52, Out:12 (epoch=100) In:28, Out:12 (epoch=100)
Methods luput

WAPE MAE WAPE MAE

GTM-Transformer AR 59.6 32.5 594 32.1
GTM-Transformer 55.2 32.1 58.7 31.0
Cross-Attention RNN+A 59.0 30.2 56.8 31.0
MuQAR [G+A+T+V] 53.61 29.28 54.51 30.1
M2TFM(soTA) 52.61 29.28 54.13 29.75
Proposed method* 55.30 26.61 19.38 10.47
Proposed method* AR 17.85 10.07 16.53 10.03

» Trend Data (Google Trends) G

]
» Product Attribute Temporal (Season, Release data, Timeframe/day, week, month, year) [A]
» Product Attribute Text (Category, Color, Fabric) [T]

 Product Texture Image (FW /SS 17, FW/SS 18, FW/SS 19) V]
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Bird detection is vital for ecology, aviation safety, and agriculture. However, existing YOLO
models, especially YOLOVS, face difficulties in avian scenes with large scale variation and clutter.
We propose MAGL-YOLO, a lightweight framework with three key designs: (i) MAFRBlock for
adaptive feature extraction, (ii) GFPNEF for efficient multi-scale fusion, and (iii) LSCSBND for
parameter—efficient detection. Experiments on the Only Bird dataset show that MAGL-YOLO

achieves 85.23% mAP50 and 46.67%
parameters and 7.2 GFLOPs.

mAP50-95,
These results confirm its strong accuracy - efficiency balance and

practical potential for real-time edge applications.

=

T

1. A
Bird detection plays a vital role in ecological conserv
ation, aviation safety, and agricultural production. Tradit
ional manual observation methods are inefficient and un
suitable for large-scale, long-term monitoring. With the
rapid development of computer vision and deep learning,
automated bird detection has emerged as an effective s
olution. For instance, improved YOLOv8-based methods
have been applied to wetland surveillance videos, signifi
cantly enhancing detection accuracy under complex bac
kgrounds[1]. In the aviation domain, real-time detection
frameworks have been introduced to mitigate bird strike
risks and improve flight safety[2]. In natural scenes, the
YOLO-Bird model demonstrated that feature enhanceme
nt and lightweight designs are effective for detecting s
mall avian objects[3]. Furthermore, researchers have co
nstructed specialized datasets and introduced feature fus
ion mechanisms to strengthen the generalization ability
Nevertheless, existing YOLOvS
models remain limited when addressing large scale vari

of detection models[4].

ations, diverse morphologies, and cluttered backgrounds
in avian-specific scenarios. To address these challenges,
this paper proposes MAGL-YOLO, a lightweight bird d

~71-

surpassing YOLOvV8 while using only 2.8M

etection algorithm designed to achieve a superior balanc
2e between accuracy and computational efficiency.

4 a7

e

2.1 Two-Stage Detectors

Two-stage algorithms, such as Faster R-CNN, Mask R-CNN,
and Cascade R-CNN, generate region proposals and then perform
classification and refinement. They achieve strong accuracy but i
nvolve high computational costs, limiting real-time deployment
[5I61071.

2.2 One-Stage Detectors

One-stage methods directly predict categories and bounding bo
xes on dense feature maps. YOLO pioneered this paradigm, SSD
improved multi-scale adaptability with default boxes, and Lin et
introduced Focal Loss to address class imbalance, enabling fast a
nd accurate detection[8][9].
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Figure 1: MAGL-YOLO Algorithm Architecture
The latest YOLOvVS integrates C2f modules to enhanc

e gradient flow, a bidirectional FPN+PAN neck for mult
i-scale fusion, and an anchor-free decoupled head that
separates classification and regression. These innovation
s achieve an effective balance between accuracy and sp
eed, making YOLOvV8 a strong baseline for real-time bi
rd detection[10].

3. & &

Built on YOLOv8, MAGL YOLO addresses the charac
teristic challenges of avian scenes including severe scal
e variation, morphological diversity, and background clu
tter through a coordinated design that first strengthens
nonlinear representation, then optimizes cross scale fusi
on, and finally reduces redundancy while preserving sta
ble optimization. The detailed architecture is shown in
Figure 1.

In the backbone, MAFRBlock uses parallel transfor
mation paths together with a selective emphasis mecha
nism to preserve fine grained textures and suppress dis
tractors. This enhances cross scale context modeling an
d boundary sensitivity at modest computational cost an
d improves the separability of small targets and targets
near image boundaries.

In the neck, GFPNEF performs staged multi branch
integration following a split then refine then reintegrate
paradigm to align semantics across scales while maintai
ning local details. Reparameterizable paths are folded at
inference into efficient equivalents, combining expressive
training structures with fast execution, which promotes
semantic coherence and detail flow and increases recall
and localization in dense scenes with many small object
S.

In the detection head, LSCSBND shares convolution
al kernels across scales to remove parameter redundanc

S5k . AOLED

A| AE o JAF

y while assigning each scale its own normalization stati
stics to respect distributional differences. Lightweight c
hannel interactions finalize classification and regression
in a decoupled manner.

The result is a favorable balance of parameter effic
iency, stable convergence, and cross scale generalizatio
n. Overall, MAGL YOLO forms a complementary triad
of nonlinear discrimination, cross scale coherence, and li
ghtweight efficiency that supports real time deployment
in bird strike warning, agricultural protection, and wetla
nd monitoring with reliable accuracy.

4. A1 g 4 %

Table 1: Comparative Experimental Analysis of Different
Mainstream SOTA Models

Model cr1§op Params(M) P(%) R(%) mAP50(%) mAP50-95(%)
Yolovsn 45 1.9 7932 7023 728 38.45
Yolov10n 6.5 22 83.17  76.06 82.03 4427
Yolovlin 63 25 85.08 77.88 83.15 44.97

hyper-yolot 8.9 3 84.45 78.16 82.79 44.72
RT-DETR-18 569 19.8 87.46  74.9 82.64 42.49
Yolovss 165 72 7923 7245 75.55 40.65
Yolov10s 214 72 8497  78.26 83.89 46.39
Yolovlls 213 9.4 85.46  77.87 83.19 46.51
hyper-yolo 10.8 3.9 83.94  78.07 82.7 4521
RT-DETR-132 8838 31 88.01  75.86 8224 4332
yolova(base) 8.1 3 83.94 7515 81.97 43.32
MAGLrg"l"("“ 72 28 87 79.28 85.23 46.67

—72-

The comparative experimental results demonstrate that
the MAGL-YOLO model achieves significant superiority
in both accuracy and efficiency over existing mainstrea
m approaches. Compared with the YOLOvVS baseline, M
AGL-YOLO improves the mAP50 by 3.26 percentage po
ints, reaching 85.23%, and enhances the mAP50-95 by
3.35 percentage points. Remarkably, these gains are atta
ined with a 7% reduction in parameter count and an 1
1% decrease in computational cost. With a lightweight
architecture of only 2.8M parameters and 7.2 GFLOPs,
MAGL-YOLO surpasses YOLOvV5n, YOLOv10n, and YO
LOvlln by 12.4%, 3.2%, and 2.1% in detection accurac
y, respectively, and even outperforms the RT-DETR-rl
8 model, which contains 19M parameters.
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In summary, MAGL-YOLO delivers state-of-the-art (S
OTA) accuracy while maintaining the smallest model si
ze, demonstrating strong generalization ability and deplo
yment efficiency, thereby providing an effective and pra
ctical solution for bird object detection.

5. 2 &

The proposed MAGL-YOLO model achieves an outstanding
balance between accuracy and efficiency in bird detection task
s. By integrating three core modules—MAFRBlock, GFPNEF, a
nd LSCSBND—the model effectively addresses challenges such
as scale variation, morphological diversity, and background clutt
er. With only 2.8M parameters and 7.2 GFLOPs, MAGL-YOLO
not only surpasses the YOLOV8 baseline but also outperforms
other mainstream lightweight models, confirming its superior pr
ecision, generalization, and real-time applicability. Consequently,
MAGL-YOLO offers a practical and efficient solution for ecolo
gical monitoring, aviation safety, and agricultural protection.
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Abstract

With the increasing reliance on fingerprint-based biomet-
ric systems, ensuring resilience against spoofing has be-
come crucial. A major obstacle in developing effective
convolutional neural networks (CNNs) models for this task
is the limited number of fingerprint images available in ex-
isting datasets. To address this challenge, we propose a
receptive field-wise feature learning framework. In our
approach, a feature integration block enables information
from multiple branches to be jointly leveraged, resulting
in richer feature representations. Feature maps from two
branches are then fused and compacted by averaging spa-
tial activations into a single value, effectively increasing
the number of effective labels during training while reduc-
ing overfitting. By enhancing the discriminative power of
the learned features, this strategy achieves an average ac-

curacy of 96.71% on the LivDet-2015 dataset, surpassing

the performance of several prior methods.

1 Introduction

Fingerprint-based biometric authentication systems are
widely adopted in applications such as mobile devices,
border control, and financial transactions because of their
convenience and reliability [1]. However, they are highly
vulnerable to presentation attacks where fabricated finger-
prints created from materials such as silicone, gelatin, or

printed images are used to deceive the sensor [2]. Ensuring

reliable detection of such attacks is therefore essential to

maintaining the security and trustworthiness of biometric
systems.

In recent years, CNNs have achieved remarkable success
in fingerprint presentation attack detection by automati-
cally learning discriminative features directly from the im-
ages [3]. While CNN-based approaches have demonstrated
promising results, their effectiveness is often hindered by
the limited size of available fingerprint spoof datasets, and
many existing methods rely on external strategies such
as transfer learning [4] or patch-based decomposition [5]
to compensate for the limited size of fingerprint spoof
datasets. Other studies have used generative models for
data augmentation [6].

In this work, receptive-field—wise feature learning is em-
ployed to reduce overfitting by compacting activations,
while the fusion of CNN-extracted features with those
from a custom DenseNet enriches local feature represen-
tation. The fused maps are then compacted into a single
representation, which enhances the effective labels. This
design focuses on enriching local features through multi-
branch integration, which strengthens the network’s abil-
ity to discriminate between live and spoof fingerprints
across different sensors and materials. The main contri-

butions of this work are as follows:

e We introduce a feature integration block that fuses
multi-branch information, yielding richer representa-

tions and more robust spoof detection.

e We compact feature maps by averaging spatial acti-

_m_



vations, reducing overfitting and improving accuracy
to 96.71% on LivDet-2015 [7], outperforming several

previous approaches.

2 Related Work

Fingerprint liveness detection has drawn significant atten-
tion due to the vulnerability of biometric systems to spoof-
ing. Early works largely relied on handcrafted local de-
scriptors. Ghiani et al. [8] introduced Local Phase Quan-
tization, which is robust to blurring and captures spec-
tral differences between live and fake fingerprints. Grag-
naniello et al. [9] extended this with the Local Con-
trast Phase Descriptor, combining spatial contrast and
frequency-phase features for improved discrimination. On
the other hand, hybrid approaches, such as HyFiPAD,
combined Local Adaptive Binary Patterns with other de-
scriptors and ensemble classifiers to improve generalization
across datasets [10].

While effective, these methods often required careful
feature engineering and still struggled with unseen spoof
materials. With the success of deep learning, CNN-based
solutions have become dominant. Nogueira et al. [11]
demonstrated that transfer learning from pretrained net-
works such as VGG and AlexNet significantly reduced
classification errors, establishing a state of the art and
winning the LivDet 2015 competition. More recent studies
have explored deeper architectures and feature-combining
strategies to further improve performance.

Based on the concept of feature-merging, we propose a
receptive-field—wise feature learning framework that fuses
CNN features with those from a custom DenseNet. Our
approach compactly integrates multi-branch feature maps
to reduce overfitting while enriching local detail. This
design enhances discriminative power across sensors and

spoof materials, achieving higher accuracy and improving

generalization ability than previous many approaches.

3 Proposed Method

The proposed methodology, illustrated in Figure 1, is built
upon a two-branch architecture. This design integrates the

CNN branch with a custom DenseNet stream through a

feature fusion block, enabling rich feature representation
to improve accuracy while minimizing overfitting on small
fingerprint datasets. The detailed methodology is outlined

in the following subsections.

3.1 Multi-Branch Feature Extraction

Given an input fingerprint image I € R¥>*W | discrimina-
tive features are extracted through two parallel streams: a
CNN branch with five convolutional layers and a DenseNet
branch with three blocks and a growth rate of 6. Their

outputs are expressed as

Fenn = fcnn(I)7 Faense = fdense(l)v (1)

where fenn(-) and fgense(+) denote convolutional trans-
formations. The feature maps obtained from the
two branches are concatenated and subsequently refined

through a convolutional layer, producing a single-channel

representation:

Ffusion = fconv (COHC&t(Fcnn, Fdense))7 (2)

where feony(+) represents the convolutional operation ap-

plied to the concatenated features. This refinement step

enables to represetn richer features.

3.2 Receptive-Field—Wise Compaction

To mitigate overfitting on limited datasets, we adopt
receptive-field—wise learning. After feature fusion and
refinement, the output is a single-channel feature map
Frusion € REXW The spatial activations are compacted
using global average pooling, expressed as

1 H W
H-W ZZFfusion<iaj)a

i=1j=1

3)

y =

where 3y’ denotes the compacted representation that serves
as the liveness score. This operation effectively treats each
receptive field as a training signal, enhancing generaliza-
tion while reducing model complexity. The model is then

optimized using binary cross-entropy loss.

3.3 Dataset and Training Configuration

We evaluated our approach on the LivDet-2015 dataset,

which includes four sensors, CrossMatch, DigitalPersona,

_w_
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Figure 1: Proposed dual-branch architecture combining
CNN and DenseNet streams with receptive-field—wise fea-

ture fusion for spoof fingerprint detection.

GreenBit, and HiScan, each providing 1000 to 1500 live
and spoof samples, along with additional unknown spoofs.
Images were converted to grayscale, inverted, and the fin-
gerprint region extracted and centered on a 512 x 512 black
background. Data augmentation with random flips and
rotations in the range of [—30°,430°] was applied.

The model was trained using SGD with a learning rate
of 0.01 and a batch size of 2 for 1500 epochs. Despite the
limited dataset, the receptive-field—wise learning frame-
work reduced overfitting, allowing the model with only

120,568 parameters to achieve high accuracy across sen-

SOr’s.

4 Results
Model DigitalPersona | GreenBit | CrossMatch | HiScan | Avg. Acc.
CNN-VGG [11] 93.72 95.40 98.10 94.36 95.39
ALDRN [12] 93.20 95.23 96.54 93.76 94.68
Jomaa et al. [13] 91.96 94.68 97.29 95.12 94.87
Ulian et al. [14] - - 95.00 - 95.00
LFLDNet [15] 93.52 98.56 98.18 96.00 96.56
OPG-CNN [5] 93.50 97.63 97.51 96.18 96.20
Proposed 94.35 97.55 99.11 95.84 96.71

Table 1: Performance comparison of fingerprint liveness

detection models on LivDet-2015.

We evaluated the proposed model using classification
accuracy and Average Classification Error (ACE), which
is the mean error rate of live and spoof classes, provid-
ing a balanced measure of performance. On the LivDet-
2015 dataset, the model achieved an average accuracy of
96.71% shown in Table 1, using a dual-branch architec-
ture that combines DenseNet and CNN features to capture

fine-grained texture details.

Dataset Training Materials Testing Materials | LivDet15 Winner[16]|SA-R-CNN(17][Proposed|

LivDet-201 Ecc

Latex, Wood Glue| 6.00% 5.46% 3.30%

Ecoflex, Gelatin, Latex, Wood Glue|Liquid Ecoflex, RTV 7.40% 4.84% 2.50%

HiScan Ecoflex, Gelatin, Latex, Wood Glue|Liquid Ecoflex, RTV 5.80% 6.03% 2.90%

Average 6.4 5.44 2.9

Table 2: Comparison of cross-material robustness mea-
sured by ACE for the proposed method on the LivDet-
2015 dataset.

Moreover, tour model improves generalization, which
explains the lower error rates like 2.9% on average against
unknown spoof materials compared to the LivDet-2015
Winner and SA-R-CNN shown in Table 2. Overall, the re-
sults demonstrate that the proposed model achieves better
accuracy compared to many previous studies while main-

taining robustness against spoofing materials.

5 Conclusion

This work presented a dual-branch framework for finger-
print spoof detection that combines a custom DenseNet
branch with a CNN-based branch through feature fusion.
The proposed model leverages receptive-field-wise learn-
ing to compact spatial activations, which helps to mitigate
overfitting in small-scale fingerprint datasets. Experimen-
tal evaluation on the LivDet-2015 benchmark confirmed
the effectiveness of the approach, achieving an average ac-
curacy of 96.71% across multiple sensors and demonstrat-
ing robustness against unknown spoof materials. These
results validate the strength of integrating complementary

feature representations for enhanced discriminative power.
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Mask-and-Reconstruct (MAR) on Noisy WiFi CSI
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ABSTRACT

This study presents a long short-term memory
(LSTM)-based deep learning (DL) model structured in
a U-Net shape with an auxiliary self-supervised
training strategy, Mask-and-Reconstruct (MAR), for
WiFi-based human pose estimation. During training,
MAR randomly masks small time x subcarrier patches
of the input CSI, and the network is optimised to
reconstruct only the masked entries (auxiliary task)
while simultaneously predicting human pose (primary
task). The proposed method is evaluated using WiFi
CSI data collected from four volunteers with a single
3x3 multiple-input multiple-output (MIMO) setup. The
robustness of the proposed method is assessed by
adding Additive white Gaussian noise (AWGN) at
Signal-to-noise ratio (SNR) levels ranging from 0 to 15
dB. The results show that MAR yields small but
consistent gains under noisy CSI data.

Keywords: LSTM, CSI, MAR, PCK, Human pose, WiFi

INTRODUCTION

Recent research has concentrated on WiFi-based
human pose estimation due to its privacy-preserving
qualities, effectiveness in occluded and dark
environments, and cost efficiency [1]. In WiFi sensing,
channel state information (CSI) is a physical-layer
measurement whose amplitude and phase fluctuate
over time and subcarriers because of human
movement, enabling the estimation of human pose [2].
Moreover, deep learning (DL) models have shown
significant potential in capturing the complex,
nonlinear relationships between WiFi CSI and human
poses. However, CSI is often affected by noise and
environmental factors, which require robust
techniques to enhance the stability and accuracy of
pose estimation [3]. Inspired by prior studies [4] and
[5], we propose a lightweight Mask-and-Reconstruct
(MAR) auxiliary task for a long short-term memory
(LSTM) model, which reduces noise-induced
degradation in the CSI. During training, it masks small
time x subcarrier CSI patches and requires the network
to reconstruct only the hidden entries while
simultaneously learning the pose.
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PROPOSED METHOD

In this work, we propose a teacher-student framework
for human pose estimation. The teacher network
extracts human poses from camera images by
employing YOLOv3 [6] for person detection and RMPE
[7] for pose regression. The teacher network's output
serves as ground truth to supervise the student
network during training. The student network then
learns to estimate human poses from WiFi CSI, which
contains the same pose information as the camera data,
since both modalities are synchronised through
timestamps. After training, the student network
operates independently, enabling reliable human pose
estimation solely from WiFi CSI signals. Furthermore,
the student network is implemented as a U-Net
architecture built with LSTM units. The encoder
comprises five layers with 128, 64, 32, 16, and 8 LSTM
units, while the decoder mirrors this configuration in
reverse order across five layers. Attention-based skip
connections are included between corresponding
encoder and decoder layers, and a final fully connected
layer outputs 17 human body keypoints. Moreover, our
key contribution is a MAR auxiliary objective for LSTM-
based WiFi-CSI pose estimation. During training, we
mask small time x subcarrier patches in the input CSI
and train the model to both predict poses (primary
task) and reconstruct only the masked CSI entries
(auxiliary task). We apply MAR with 2 x 6 patches and
a 0.30 masking ratio—i.e., about 30% of the input CSI
grid is hidden at the block level. The auxiliary loss is
computed only on the hidden cells, encouraging the
LSTM to exploit local temporal-spectral context and
thereby enhance tolerance to noisy or partially missing
CSI. During testing, no masking is applied, allowing the
model to predict poses directly without additional
costs. This lightweight regularisation yields small,
consistent gains, particularly under noisy conditions.

EXPERIMENTAL SETUP

The experimental setup features a single WiFi
transmitter and receiver, each equipped with three
antennas, forming a 3x3 MIMO system. The
transmitter operates at 2.4 GHz using orthogonal



frequency division multiplexing (OFDM) technology,
with 30 subcarriers over a bandwidth of 20 MHz. The
sampling frequency of the WiFi setup is set to 100 Hz
and synchronised with a camera running at 20 frames
per second, such that each video frame corresponds to
five consecutive CSI samples. Accordingly, the model
input has the shape (5, 30, 3, 3), where the first
dimension represents five consecutive CSI packets, 30
is the number of subcarriers, and the last two
dimensions indicate the number of transmit and
receive antennas. Data collection was carried out in the
Smart Networking Laboratory, Department of
Computer Engineering, Chosun University, Gwangju,
Republic of Korea. The dataset includes 3,500 CSI
samples recorded from four volunteers performing
various activities, including walking, standing, sitting,
squatting, and raising hands. Finally, to evaluate
robustness, additive white Gaussian noise (AWGN) was
added to the original CSI at signal-to-noise ratios (SNRs)
of 0 dB, 5 dB, 10 dB, and 15 dB to assess the
performance of the proposed method. With 2x6
patches (time x subcarriers) and a 0.30 masking ratio,
MAR conceals 30% of the input CSI grid (5 x 30 x 3 x 3)
at the block level.

RESULTS AND DISCUSSION

Table 1 shows the performance evaluation of the
proposed method under different noise conditions,
measured in terms of percentage of correct keypoints
(PCK) @5 and PCK@10, both with and without MAR.
The values in the table represent the average PCK
scores, calculated by taking the mean performance
across all 17 body keypoints for the entire dataset. As
expected, increasing the SNR from 0 dB to 15 dB
consistently enhances performance across all metrics,
since higher SNR indicates reduced noise interference
and more reliable CSI-based feature extraction. At low
SNR levels (0-10 dB), including MAR yields significant
improvements, with gains observed in both PCK@5
and PCK@10. For instance, at 0 dB SNR, PCK@5
increases from 2.41% to 2.69%, and PCK@10 from
9.04% to 9.87% when MAR is applied. These findings
demonstrate the effectiveness of MAR in mitigating
noise-induced degradation, particularly in challenging
conditions.

At higher SNR levels, the performance gap between the
two configurations diminishes, indicating that MAR
provides diminishing returns as noise levels drop. For
example, at 15 dB SNR, PCK@5 increases only slightly
from 9.40% without MAR to 9.54% with MAR, while
PCK@10 shows a slight rise from 29.62% to 29.81%.
These findings suggest that the proposed MAR
mechanism is especially effective in low-SNR
conditions, where signal corruption is severe, but its
impact plateaus under moderate-to-high SNR
scenarios. Overall, these results confirm that MAR
primarily enhances robustness in challenging
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environments and ensures stable performance when
WiFi CSI measurements are heavily influenced by noise.

Table 1. Performance comparison of the proposed
method with and without MAR under AWGN.

Noise PCK@5 PCK@10
Level Without With Without With

MAR MAR MAR MAR
SNR O 2.41% 2.69% 9.04% 9.87%
SNR 5 4.86% 5.06% 16.27% 17.31%
SNR 10 6.73% 6.94% 22.27% 22.70%
SNR 15 9.40% 9.54% 29.62% 29.81%

CONCLUSION

This paper presented an LSTM-based U-Net for WiFi
CSI-based human pose estimation, enhanced with a
lightweight Mask-and-Reconstruct (MAR) auxiliary
objective. By randomly masking small patches in the
time and subcarrier dimensions of the input CSI during
training and reconstructing only the hidden entries
while simultaneously learning the pose, the model is
encouraged to leverage local temporal-spectral
context. Experiments conducted on data collected with
a single 3x3 MIMO setup from four participants,
including evaluations under AWGN at 0-15 dB SNR,
demonstrate minor but consistent improvements in
PCK@5 and PCK@10 with MAR, with the most notable
gains observed at lower SNRs. Overall, the results
suggest that MAR is a practical, low-overhead
regularizer for noisy CSI.
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